Probabilistic Assessment of Coastal Storm Hazards

Dr. Norberto C. Nadal-Caraballo
Leader, Coastal Hazards Group

Team: Victor Gonzalez, P.E.
 Jeffrey A. Melby, PhD
 Amanda B. Lewis
 Efrain Ramos-Santiago

Coastal and Hydraulics Laboratory
US Army Engineer R&D Center

Norberto.C.Nadal-Caraballo@usace.army.mil

Resilience of Coastal Infrastructure Conference
Hato Rey, PR – March 8-9, 2017
Probabilistic Coastal Hazard Assessment (PCHA)

- PCHA is a probabilistic framework for the assessment of coastal hazards, including uncertainty quantification.

\[
\text{Risk} = \text{Hazard} \times \text{Exposure} \times \text{Vulnerability}
\]

\[
\text{Hazard} = \text{Severity} \times \text{Likelihood}
\]

Probable Maximum Hurricane, Standard Project Hurricane ≠ Risk

Bottom line: state-of-the-art risk assessment must be done within a probabilistic context
Probabilistic Coastal Hazard Assessment (PCHA)

- Hazard Curve
 - Annual Exceedance Probability (AEP) of a given coastal hazard e.g., water level, storm surge, wave height, wave run-up, overtopping
Probabilistic Coastal Hazard Assessment (PCHA)

- Regional Variations

<table>
<thead>
<tr>
<th>Region</th>
<th>Tropical Cyclones</th>
<th>Extratropical Cyclones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gulf of Mexico</td>
<td>Tropical Cyclones</td>
<td>Extratropical Cyclones</td>
</tr>
<tr>
<td>Atlantic Coast</td>
<td>Tropical &</td>
<td>Extratropical Cyclones</td>
</tr>
<tr>
<td></td>
<td>Extratropical</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cyclones</td>
<td></td>
</tr>
<tr>
<td>Great Lakes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pacific Coast</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Type of probabilistic model is region-specific due to different dominant forcing.

(TCs considered for Southern California)
Probabilistic Coastal Hazard Assessment (PCHA)

- **Examples**

 - **USACE’s coastal risk assessment studies**
 - Louisiana Coastal Protection and Restoration, 2009
 - Coastal Texas Storm Surge Studies, 2011 & 2017
 - North Atlantic Coast Comprehensive Study, VA to ME
 - South Atlantic Coast Comprehensive Study*
 - Phase I: NC to South FL, *PR & USVI; Phase II: South FL to MS

 - **FEMA’s National Flood Insurance Program (NFIP)**
 - Risk MAP (Mapping, Assessment & Planning)

 - **U.S. Nuclear Regulatory Commission (NRC)**
 - Probabilistic flood hazard assessment of nuclear power plants
Probabilistic Coastal Hazard Assessment (PCHA)

- Examples: Puerto Rico

FEMA Coastal Study (2009)

Climatology
- 26 tropical cyclones from 1910 to 2004
- 2 transpositions of Hurricane Betsy’s track

Probabilistic Model
- Empirical Simulation Technique (EST)

Numerical Models
- PBL (wind and pressure), ADCIRC (storm surge)
Probabilistic Coastal Hazard Assessment (PCHA)

Joint Probability Analysis

vs. historical observations & EST

- **Problem**: Extreme coastal storms are rare, sparse, and not well represented in historical observation records.
ERDC/CHL’s PCHA

- **Approach/Outcome**
 - Develop probabilistic coastal hazard models and efficient synthetic-storm suites to maximize coverage of storm parameter and probability spaces.
 - Simulate storms with high-resolution models.
 - Compute joint probability of storm forcing and responses, including uncertainty.
 - Distribute data and statistical results through simple-to-use web tool.

* Can account for sea level change (SLC) scenarios and future climate changes (e.g., storm frequency and intensity).
ERDC/CHL’s PCHA

Storm Sampling
- Characterization of Storm Climate (Forcing)
 - Tropical Cyclones (Synthetic)
 - Extratropical Cyclones (Historical)
- Development of JPM Storm Set
- Development of Composite Storm Set

Climate and Hydro Modeling
- PBL Cyclone Model (Wind and Pressure Fields)
- WAM (Regional)
- ADCIRC
 - CSTORM-MS Coupler
 - STWAVE (Nearshore)
- CSTORM

Response Statistics
- Combined Joint Probability
- Annual Exceedance Probability Confidence Levels

CHS

- Water level (storm surge, astronomical tide, SLC)
- Wind speed, direction, currents
- Wave height, period, direction

- StormSim
ERDC/CHL’s PCHA

- Tropical Cyclones – Parameterization

\[\text{Response} = f(\hat{x}) = f(x_0, \Delta p, R_{\text{max}}, V_f, \theta) \]
ERDC/CHL’s PCHA

- Synthetic Tropical Cyclone Suite (NACCS Example)

- 130 unique master tracks (MT) from NC to Canada
- Average of 8 TC per MT
- Along-track parameter variations are Latitude-dependent:
 - Δp
 - \(R_{max} \)
 - Holland B

Tropical Cyclones
- 1,050 synthetic

Extratropical Cyclones
- 100 historical

Total Cyclones
- 1,150
ERDC/CHL’s PCHA

- **StormSim-GPM (Gaussian Process Metamodell)**

 - **Approach:** augmentation of the synthetic storm suite to refine the discretization of the joint probability distribution.
 - **Increases order of magnitude of synthetic tropical cyclones from 100-1,000 to 10,000-1,000,000**
 - **Reduces AEP uncertainty.**

\[
f(x_0, \Delta p, R_{\text{max}}, V_f, \theta) \Rightarrow [\text{training}] \Rightarrow \text{Response}
\]
ERDC/CHL’s PCHA

Quantification of Uncertainty

- Meteorological modeling errors + track variation
- Hydrodynamic modeling errors
- Astronomical tide nonlinearity
- SLC nonlinearity

<table>
<thead>
<tr>
<th>Uncertainty</th>
<th>FEMA 2008 (m)</th>
<th>USACE 2011 (m)</th>
<th>FEMA 2014 (m)</th>
<th>NACCS (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrodynamic modeling</td>
<td>0.23</td>
<td>0.53 to 0.76</td>
<td>0.39</td>
<td>0.48</td>
</tr>
<tr>
<td>Meteorological modeling</td>
<td>0.36</td>
<td>0.07 to 0.30</td>
<td>0.54</td>
<td>0.38</td>
</tr>
<tr>
<td>Storm track variation</td>
<td>n/a</td>
<td>0.20 × wave setup</td>
<td>n/a</td>
<td>0.25</td>
</tr>
<tr>
<td>Holland B</td>
<td>0.15 × surge elevation</td>
<td>0.15 × surge elevation</td>
<td>n/a</td>
<td>0.15 × surge elevation</td>
</tr>
<tr>
<td>Astronomical tide</td>
<td>0.20</td>
<td>n/a</td>
<td>n/a</td>
<td>variable</td>
</tr>
</tbody>
</table>
Probabilistic Coastal Hazard Assessment (PCHA) Products

- **Coastal Hazards System (CHS)** https://chs.erdc.dren.mil
 - National coastal storm hazard data resource, spanning practical probability and forcing-parameter spaces.
 - Contains numerical and probabilistic modeling results including storm surge, astronomical tide, waves, currents, and wind.

- **StormSim** – stochastic storm simulation system
 - Used for joint probability analysis of coastal storm hazards.
 - GUI in development for select statistical tools.

- **CSTORM** system (POC: Dr. Chris Massey, Ms. Mary Cialone)
 - Standardizes application of high-resolution, highly skilled numerical models.
 - Consists of WAM for deep water waves, and tightly two-way coupled ADCIRC and STWAVE for storm surge and nearshore waves.
Probabilistic Coastal Hazard Assessment (PCHA) Studies

- **North Atlantic Coast Comprehensive Study (NACCS)**
 - Virginia to Maine
 - Statistical reanalysis (v.2) to be completed in 2017

- **Coastal Texas Study**
 - To be completed in summer of 2017

- **South Atlantic Coast Comprehensive Study (SACCS)**
 - Phase I (2018), Phase II (2019)
 - South Florida to North Carolina
 - including Puerto Rico and USVI
 - Mississippi to South Florida
Contact Information

Dr. Norberto C. Nadal-Caraballo
Leader, Coastal Hazards Group
U.S. Army Engineer R&D Center
Coastal and Hydraulics Laboratory
email: Norberto.C.Nadal-Caraballo@usace.army.mil

Questions?